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With the growing number of available social and biological networks, the problem of detecting the network
community structure is becoming more and more important which acts as the first step to analyze these data.
The community structure is generally regarded as that nodes in the same community tend to have more edges
and less if they are in different communities. We propose a simple probabilistic algorithm for detecting
community structure which employs expectation-maximization �SPAEM�. We also give a criterion based on
the minimum description length to identify the optimal number of communities. SPAEM can detect overlap-
ping nodes and handle weighted networks. It turns out to be powerful and effective by testing simulation data
and some widely known data sets.
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I. INTRODUCTION

Many systems can be represented by networks where
nodes denote entities and links denote existing relation be-
tween nodes; such systems may include the web networks
�1�, the biological networks �2�, ecological web �3�, and so-
cial organization networks �4�. Many interesting properties
have also been identified in these networks such as small
world �5� and power-law distribution �6�. One property that
attracts much attention is the network community structure,
which is the phenomenon that nodes within the same com-
munity are more densely connected than those in different
communities �7�. It is important in the sense that we can get
a better understanding about the network structure.

This problem has been studied by researchers from differ-
ent perspectives. Earlier approaches for identifying commu-
nities could be divided into two categories: the hierarchical
approach and divisive approach. The former merged two
closest nodes into one community recursively until the whole
network became one single community, and the latter
worked from the top to bottom which split the whole net-
work into two communities recursively until every node was
a community. These algorithms usually needed a measure to
evaluate the closeness or dissimilarity between two nodes
�see �7–11��.

An important modularity measure for evaluating the
goodness of community structure was proposed by Newman
and Girvan �12� and several algorithms worked by maximiz-
ing it �13–16�. This measure was very efficient in character-
izing the community structure for networks with balanced
structure; however, the internal scale problem in its definition
�17� made it fail to work well for unbalanced networks such
as those whose communities varied in size and degree se-
quence. Quite recently, an information-based algorithm by
Rosvall and Bergstrom �18� accurately resolved communities
and, in particular, can to some extent get over the scale prob-
lem of modularity.

Also, researchers �19� found that communities were over-
lapping rather than disjoint; subsequent algorithms

�18,20,21� were designed to deal with overlapping commu-
nities. A mixture model by Newman and Leicht �22� could
automatically detect patterns inside a network; meanwhile, it
was able to detect overlapping nodes as a byproduct.

All these state-of-the-art algorithms motivate us to treat
the community detection problem as a probabilistic inference
problem; we should mind the internal information which de-
termines the network topology. The internal information
gives insight to the network structure. Our work is inspired
by the probabilistic latent semantic analysis �23� which is a
powerful algorithm in text mining; it models that a term
occurs in a document if they are under the same latent topic.
This idea is employed here to detect the community structure
in complex networks. Compared to other algorithms �24,25�,
which also explore internal structure, our model possesses
the mathematical simplicity and hence is easy to understand.

II. METHOD

Assume that the network considered is undirected and un-
weighted with n nodes; let A denote the adjacent matrix and
N�i� denote the neighbors of node i. Suppose c communities
are to be detected, let �r be the probability of community r,
which can be viewed as the fraction of nodes in community
r ,r=1,2 , . . . ,c. Instead of assigning a specific community to
every vertex, we assume every vertex participates in every
community, more specifically, community r selects node i
with probability �r,i such that �i=1

n �r,i=1. For each commu-
nity r, this is a multinomial distribution with parameters
�r,i , i=1,2 . . . ,n, such that the community r chooses node
i to represent itself with probability �r,i; obviously, large
value of �r,i indicates that node i is important in community
r. Each node i participates in all community with
�1,i ,�2,i , . . . ,�c,i. Note that there is no constraint �r=1

c �r,i
=1, but different �r,i measures the relative importance of
node i in community r.

For an edge between node i and j, consider it to be a node
pair. Self-loop edge for node i is also allowed; for consis-
tency, we model that a self-loop for node i is also regarded as
pair �i , i�. The edge eij or—more precisely—the node pair
�i , j� is generated by the following finite mixture model
where the community r is the latent variable.*renwei@amss.ac.cn
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�1� Select a community r with probability �r. �2� Com-
munity r selects the node i with probability �r,i; this is a
multinomial distribution with parameters ��r,1 , . . . ,�r,n�. �3�
Meanwhile, community r selects the other node j with prob-
ability �r,j, which is also a multinomial distribution with
parameters ��r,1 , . . . ,�r,n�

By assuming independence when community r selects
node i , j in step 2 and step 3, the probability of choosing this
particular node pair �i , j� is

Prob�eij��,�� = Prob��i, j���,�� = �
r=1

c

�r�r,i�r,j .

Since each of the above three steps in this selecting pro-
cess is a well-defined probability space, this probability
Prob�eij �� ,�� is indeed a legitimate probability due to the
fact �i=1

n � j=1
n Prob�ei,j �� ,��=1. Note that Prob�eij �� ,��

=Prob�ej,i �� ,��; the above model makes no distinction be-
tween �i , j� and �j , i�, which implies that this model only
works for undirected networks.

Though Prob�eij �� ,�� is defined from the process of se-
lecting node pair �i , j�, it can also be viewed as the reliability
of the edge between node i and j; high value of
Prob�eij �� ,�� is regarded as a reliable edge. To maximize
the reliability of the edge, node i and node j should partici-
pate in some common community r with the large value of
�r,i ,�r,j. For example, if there are totally two communities to
detect, and suppose �1=�2=0.5, if �1,i=1 /2n, �2,i=2 /n,
�1,j =1 /2n, and �2,j =2 /n then Prob�eij �� ,��=17 /8n2; but if
�1,i=2 /n, �2,i=1 /2n, �1,j =1 /2n, and �2,j =2 /n then
Prob�eij �� ,��=1 /2n2 which is a much lower reliability than
the former one. In the former case, we see that i , j mainly
participating in community 2 as is indicated by the value of
�2,i ,�2,j; however, in the latter case, node i mainly partici-
pates in community 1 while node j mainly participates in
community 2. So the idea in the definition of Prob�eij �� ,��
is that if two nodes i , j are connected, they should participate
mainly in some community r; in other words, important
nodes in community r should be connected. This is exactly
the common knowledge about the community structure.

Each edge is just the result of the above node pair select-
ing experiment. Naturally, the logarithm probability of net-
work A under parameters � ,� can be modeled as

L = ln Prob�A��,��

= �
i=1

n

�
j:j�N�i�

ln Prob�eij��,��

= �
i=1

n

�
j:j�N�i�

ln	�
r=1

c

�r�r,i�r,j
 . �1�

Parameters � ,� should be estimated to maximize Eq. �1�.
However, L in Eq. �1� contains logarithm of sums and is
difficult to optimize but can be optimized easily by the
expectation-maximization �EM� algorithm.

Once all the parameters are estimated, the preference of
node i belonging to community s is computed as us,i
=�s�s,i, and node i is assigned to community r such that r
=arg maxs�us,i=�s�s,i , s=1,2 , . . . ,r�. us,is can be normal-

ized so that their sum is 1 to comply with the probability
normalization condition. In fact, this gives a soft assignment
and can be used to detect overlapping nodes. Also this
method does not definitely indicate whether an edge is an
intercommunity or intracommunity, but in a probabilistic
way �see Eq. �2��.

Suppose for node i, r=arg maxs�us,i=�s�s,i , s
=1,2 , . . . ,r�, empirically node i is an overlapping node if
there is another community s such that

us,i

ur,i
�1 /10. This algo-

rithm appears to be highly similar to the mixture method by
Newman and Leicht �22�: both methods are based on the
mixture model and reply on EM algorithm to do the optimi-
zation. However, the model assumptions are quite different.

�1� First, in Newman’s model, the parameter �r,i indicates
the probability of group r linking toward node i which mod-
els linkage property; even if a node i does not belong to
group r, there is still a chance that �r,i is large. However, in
our model, �r,i is the probability of the node i appearing in
community r which is the node property; the large value of
�r,i indicates node i strongly belongs to community r.

�2� Second, in Newman’s method, to evaluate the prob-
ability of a directed edge ei,j, a group membership gi has to
be assigned to node i such that the probability of this edge is
modeled as �gi,j

. Quite differently, in our model, the prob-
ability of an edge ei,j or, precisely, the probability of choos-
ing the node pair �i , j� is modeled as �r=1

c �r�r,i�r,j. This
means that the probability of this edge depends on the
strength of node i , j’s consistent participation in every com-
munities. If both nodes strongly participate in some particu-
lar community r, Prob�ei,j �� ,�� tends to be large; on the
other hand, if nodes i , j mainly participate in different com-
munities, Prob�ei,j �� ,�� tends to be small. The above key
difference differentiates the two models. Newman’s mixture
model consider a set of nodes to be a group if they have a
similar linkage property while our model consider a set of
node to be a community if they are densely connected. Of
course as a result, the E step and M step of these two meth-
ods are different due to different model assumptions.

�3� The advantage of Newman’s method is that it can
detect a general pattern such as the bipartite structure; there
are also potential disadvantages. The groups it detects consist
of various kinds of patterns; say, some groups may be com-
munities, other groups might be loosely interconnected. Our
model is designed for detecting communities only. In Sec.
III, we show experimentally that it does outperform New-
man’s model in detecting communities structure.

A. EM formula

The EM algorithm is proposed to maximize the probabil-
ity that contains latent variables �26�; it computes the poste-
rior probability of the latent variables under the observed
data and currently estimated parameters in the E step, and
updates parameters with these posterior probabilities in the
M step. The posterior probability Prob�gij =r �A ,� ,�� of
edge ei,j or node pair �i , j� generated by community r condi-
tional on the observed network A and parameter � ,� denotes
this probability by qij,r, then
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qij,r = Prob�gij = r�A,�,��

=
Prob�gij = r,A��,��

Prob�A��,��

=
Prob�eij,gij = r,A��,��

Prob�A��,��
.

By simple deduction the E-step formula can be obtained,

qij,r = Prob�gij = r�A,�,�� =
�r�r,i�r,j

�
s=1

c

�s�s,i�s,j

. �2�

In fact, qij,r is the fraction of contribution from community r
under the observed matrix A and parameters � ,�. Obviously,
the expected logarithm probability of the network is

L� = �
i=1

n

�
j:j�N�i�

�
r=1

c

qij,r ln Prob�ei,j,gij = r��,��

= �
i=1

n

�
j:j�N�i�

�
r=1

c

qij,r ln��r�r,i�r,j� . �3�

Combining with the constraints that �r�r=1, �i=1
n �r,i=1, and

r=1,2 , . . . ,c, the Lagrange form of L� is

D = �
i=1

n

�
j:j�N�i�

�
r=1

c

qij,r ln��r�r,i�r,j� + �	�
r=1

c

�r − 1

+ �

r=1

c

�r	�
i=1

n

�r,i − 1
 , �4�

where � ,�r ,r=1,2 , . . . ,c are Lagrange multipliers. The de-
rivatives of D in Eq. �4� are

�D

��r
= �

i=1

n

�
j:j�N�i�

qij,r + � , �5�

�D

��r,i
= �

j:j�N�i�
qij,r + �r. �6�

By setting the derivative in Eqs. �5� and �6� to zero and
combining the constraints �r�r=1, �i=1

n �r,i=1, and r
=1,2 , . . . ,c, the M-step formulas are

�r =

�
i

�
j:j�N�i�

qij,r

�
i

�
j:�N�i�

�
s=1

c

qij,s

, �7�

�r,i =

�
j:j�N�i�

qij,r

�
k=1

n

�
j:j�N�k�

qkj,r

. �8�

In the E step, the membership of an edge is influenced by its
nodes; while in the M step, the node importance in commu-

nities is influenced by the membership of all its links. By
iterating E and M steps, L in Eq. �1� will increase.

Parameters � ,� are initialized with random values and
iterated using E and M steps until L stabilizes. To avoid the
algorithm getting stuck in a local maxima, we adopt the re-
start strategy which runs the EM algorithm several times
with different initial parameter values.

Suppose the network has totally l edges; obviously the
algorithm has a linear time complexity O�cl�, which makes it
an appealing approach for detecting large scale networks.
Note that the actual running time is also relevant to the num-
ber of EM iterations and the number of restarts. We name our
model, for easier representation, simple probabilistic algo-
rithm which employs the idea of expectation and maximiza-
tion �SPAEM� framework.

B. Model selection issue

SPAEM needs a prespecified community number c and
this is regarded as prior knowledge. However, the determi-
nation of c is a nontrivial task and is difficult when no prior
knowledge can be obtained. We try to handle it by using
minimum description length principle �27�.

In general, L in Eq. �1� increases as c increases; mean-
while, an extra cost has to be paid due to the increase in the
number of parameters K= �c−1�+c�n−1�. There should be
some balance between L and K, and the idea of minimum
description length principle can be employed here �27�. Ac-
cording to this principle, the code length needed to describe
the network data is composed of two parts where the first
part describes the coding length of the network using
SPAEM while the second part gives the length for coding all
parameters of SPAEM itself. The length needed for the cod-
ing network using SPAEM is obviously −L /2 �note that ev-
ery edge is added twice�. To code the parameters, a precision
� has to be prespecified. With this precision �, parameters
smaller than � are not coded and get a description length of
0; otherwise coding the parameter �r needs length ln�

�r

� � and
�r,i needs length ln�

�r,i

� �, so the total length H for coding the
model is

H = − L/2 + �
r=1

c

ln	�r

�

I��r 	 ��

+ �
r=1

c

�
i=1

n

ln	�r,i

�

I��r,i 	 �� . �9�

Value c should be chosen as the one which generates the
minimum description length H in Eq. �9�. Choosing preci-
sion � is tricky but is very important in Eq. �9�. Smaller �
may cause longer code for parameters and hence will always
prefer models with small c. In fact, it is shown that networks
are organized in a hierarchical way �28�; the choice � gives a
lever for viewing networks in different resolutions. It is in-
tuitively clear that � should be on the scale of 1 /n due to the
normalization condition �i=1

n �r,i=1. Typically, if node i be-
longing to community r, �r,i will be on the scale of 1 /n and
be much smaller than 1 /n if not belongs to this community.
Here � is set to 1 / �3n�. This precision is totally empirical but
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as will be shown in Sec. III that for well-clustered networks,
the model selection results are robust to the choice of � rang-
ing from 1 /n to 1 / �7n�.

III. EXPERIMENT

A. Zachary club network

The famous Zachary club network is about acquaintance
relationship between 34 members �4�. The club splits into
two parts due to an internal dispute so it naturally has com-
munity structure. By setting c=2, we run our algorithm and
get exactly the original two communities �see Fig. 1�. Node
color indicates community and node size indicates the value
of ur,i=�r�r,i, which can partially measure the importance of
node i in community r. Nodes 1, 2, 33, and 34 are important
nodes found by SPAEM and can be verified intuitively from
the network.

SPAEM gives soft assignment to each node so is capable
of detecting overlapping nodes �see Table I�. To compare the
ability in detecting overlapping nodes, we also include qir
used to assign communities in the mixture model �22�.
Clearly, nodes 1, 2, 33, and 34 are not overlapping nodes but
node 9 is. The mixture model also can detect this; however,
by checking corresponding probabilities �see Table I�

SPAEM shows more accuracy by revealing the extent of
overlapping.

B. American college football team network

The second network investigated is the college football
network which represents the game schedule of the 2000
season of Division I of the U.S. college football league �7�.
The nodes in the network represent the 115 teams, while the
links represent 613 games played. The teams are divided into
12 conferences and generally games are more frequent be-
tween members of the same conference than between teams
of different conferences.

The result of SPAEM and the mixture model �22� is de-
picted in Figs. 2 and 3, respectively. SPAEM basically un-
covers the original community structure. However, the mix-
ture model gets a very different result �see Fig. 3�. This is
because the groups it detects is a set of nodes with similar
linkage property so it may not be common sense community.
The three node group in the middle of Fig. 3 is obviously not
a community. There are still other groups consisting of nodes
from different communities �see Fig. 3�. The mixture model
can detect patterns but it cannot differentiate different kinds
of patterns; in other words, it cannot tell whether a detected
group is a community.

C. Comparison with other methods

A modularity measure Q=�r=1
c �

lrr

l − �
dr

2l �
2� was proposed

by Newman and Leicht �12�, where lrr is the number of links
in community r, dr is the total degree in community r, and l
is the total number of edges in the network. Good commu-
nity structure usually indicates a large value of Q. But there
is a scale l in the definition of Q and this may cause a prob-
lem in some networks �17,18�. Such networks include those
whose communities vary in size and degree sequence.

Dolphin social network reported by Lusseau et al. �3�
provides a natural example where communities vary in size.
In this network, two dolphins have a link with each other if
they are observed together more often than expected by
chance. The original two communities have different sizes,
with one containing 22 dolphins and the other 40. Setting c
=2, SPAEM only misclassifies one node and gets exactly the
same result as the edge—betweenness algorithm �7� and the
information-based algorithm �18�; however, the modularity
based method �15� gets different result, as depicted in Fig. 4.

It is shown that the modularity algorithm works well for
networks whose communities roughly have the same size
and degree sequence but may not provide very competitive
results when the communities differ in size and degree se-
quence �18�. To show the way SPAEM handles these situa-
tions, we conduct the same three sets of test as done in �18�:
symmetric, node asymmetric, and link asymmetric. In the
symmetric test, each network is composed of four communi-
ties with 32 nodes each; each node has an average degree of
16. kout is the average number of edges linking to nodes in
different communities. In the node asymmetric test, each net-
work is composed of two communities with 96 and 32 nodes,
respectively. kout has the same meaning as in the symmetric
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FIG. 1. Zachary club network: node color indicates community
and node size indicates ur,i. Clearly nodes 9, 10, and 31 are over-
lapping nodes and have been identified by our algorithm.

TABLE I. Result on Zachary network. ur,i is calculated by ur,i

=�r
�r,i, which is interpreted as the preference of node i belong-
ing to community r. The qirs in the mixture mode �22� are also
included. To facilitate comparison, we normalize us,i so they add up
to 1.

Node ID u1,i u2,i
u1,i

u1,i+u2,i
qi1

a

1 3.30
10–5 0.1025 0.00 0.00

2 4.86
10–6 0.0577 0.00 0.00

9 0.0219 0.0101 0.69 0.96

13 5.83
10–36 0.0128 0.00 0.00

31 0.0179 0.0078 0.70 0.92

33 0.0769 1.55
10–8 1.00 1.00

34 0.1090 8.20
10–6 1.00 1.00

aqir is defined in �22� as the probability of node i belonging to
community r.
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FIG. 2. Result of SPAEM for American foot-
ball network: node label indicates the real com-
munity membership. Nodes belonging to the
same community detected by SPAEM are placed
adjacently.
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FIG. 3. Result of the mixture model �22� for

American football network: node label indicates
the real community membership. Nodes belong-
ing to the same group detected are placed to-
gether; groups which are not the common sense
community structure are marked using cycled
line. Some of these groups are formed by nodes
from two real communities. Also there is a three
node group which is clearly not a community.
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test. kout is set to 6, 7, and 8 in both the symmetric and node
asymmetric cases; as kout increases, it becomes difficult to
detect real community structure. In the link asymmetric test,
two communities each with 64 nodes differ in their average
degree sequence: nodes in one community have average 24
edges and in the other community have only eight edges,
setting kout=2 ,3 ,4. Table II gives the results of our algorithm
compared to other algorithms �12,18,22�. Note that the re-
sults of the information algorithm and the modularity algo-
rithm are cited from �18� while results of the mixture model
are calculated by the authors. We have to admit that the
information algorithm outperforms all three algorithms, es-
pecially in the node asymmetric and link asymmetric tests.
SPAEM outperforms the modularity algorithm �12� in the
symmetric and node asymmetric tests. The mixture model
�22� seems to perform not so well in the symmetric test; this
might be due to the fact that the groups it discovers may not
be communities due to fuzzy structure of these networks as
kout increases.

D. Handling weighted network

SPAEM can also be extended to handle weighted net-
works. Suppose the weighted adjacent matrix of the network
is Wn
n with its entries wi,j , i=1,2 , . . . ,n , j=1,2 , . . . ,n;
then the logarithm likelihood of the network becomes

L = �
i=1

n

�
j:j�N�i�

wi,j ln	�
r

�r�r,i�r,j
 . �10�

L� becomes

L� = �
i=1

n

�
j:j�N�i�

�
r

wi,jqij,r ln Pr�ei,j � r�

= �
i=1

n

�
j:j�N�i�

�
r

wi,jqij,r ln��r�r,i�r,j� . �11�

The E step is unchanged but M step becomes
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FIG. 4. Dolphin network: node shape denotes the real split. The left line shows the result by SPAEM with only one mistake, while the
right line indicates the result in �15�.

TABLE II. Results on the benchmark test on three experiments: symmetric, node asymmetric, and link
asymmetric.

Test kout SPAEM Compressiona Modularityb Mixturec

Symmetric 6 0.99 0.99 0.99 0.92

7 0.95 0.97 0.97 0.81

8 0.84 0.87 0.89 0.64

Node 6 0.97 0.99 0.85 0.97

Asymmetric 7 0.92 0.96 0.80 0.92

8 0.79 0.82 0.74 0.74

Link 2 0.98 1.00 1.00 0.99

Asymmetric 3 0.94 1.00 0.96 0.94

4 0.84 1.00 0.74 0.70

aInformation method in �18�.
bModularity based method in �12�.
cMixture model in �22�.
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Intuitively the M-step formula is reasonable since links with
greater weights contribute more to corresponding param-
eters.

To test SPAEM on weighted networks, the simulation test
is done as that in �29�. This set of tests is based on the above
symmetric test when kout=8. For each of the 100 networks in
the symmetric test with kout=8, the weight of edges within a
certain community is raised to w=1.4,1.6,1.8,2, while the
weight of edges running between communities is unchanged
�with weight 1�. As weight w increases from 1.4 to 2, models
should improve their power in detecting community struc-
ture. Results of SPAEM are shown in Table III as well as the
results in �29� for comparison �note that the results in �29�
are directly cited rather than recalculated�. SPAEM generally
outperforms the model in �29�.

The limitation with the above simulation test is that any
algorithm will respond positively when w increases and that
the original unweighted networks already have clear commu-
nity structure. Now we devise a more elaborate example.
Consider a network with 32 nodes, each node pair has an
edge with probability prand; obviously, this network has no
community structure. Let nodes 1–16 be in group 1 and
nodes 17–32 be in group 2. Weight of edges inside each
group is raised to 1.5 with probability pweight but the weight
of edges running between groups is unchanged. Now the
only thing that can differentiate these two groups is the
weight of edges. By setting prand=0.8 and pweight=0.8,
SPAEM uncovers the two groups with only three mistakes
�see Fig. 5�. This shows that SPAEM is able to make good
use of edge weight.

E. Model selection test

Now, the minimum description length H defined in Eq.
�9� is employed for SPAEM to select c, the optimal number

of communities, and the precision is empirically set to 1 /3n.
The criterion indicates that 11 communities in the American
football network �7� should be detected �see Fig. 6�a��, the
result seems to be wrong since there should be 12 commu-
nities; however, there is a conference “independents” which
cannot be really a conference because teams in it play games
with adjacent conferences. This criterion also determines
four communities in the journal citation network �see Fig.
6�b��. These two results show that H in Eq. �9� and precision
1 /3n are sound.

To further test the validity of the model selection prin-
ciple, model selection results on the above simulation experi-
ments �symmetric, node asymmetric, and link asymmetric�
are presented in Table IV. Combined with the model selec-
tion principle, SPAEM gives very competitive results in all
these three tests. One weird thing is that in the node asym-
metric case, the accuracy of SPAEM increases as kout in-
creases; this is partly because the penalty term for describing
the model parameters in Eq. �9� favors small number com-
munities. This also in turn verifies that selection criterion and
the precision are reasonable.

F. Model selection discussion

The model selection criterion in Eq. �9� is sensitive to the
choice of the accuracy �; different � would lead to different

TABLE III. Benchmark test on weighted network designed by
�29�. There are four communities each with 32 nodes in the network
with kout=8. As w increases from 1.4 to 2, both methods respond
positively but SPAEM gets better results.

SPAEM Markova

w=1.4 0.96 0.89

w=1.6 0.98 0.94

w=1.8 0.99 0.97

w=2 0.99 0.98

aRandom walk model in �29�.

FIG. 5. Results on the simulated weighted network. Node shape
shows the original community, while node color indicates the com-
munity structure detected by SPAEM.
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FIG. 6. �a� Model selection result for American football team
network. �b� Model selection result for the journal citation network.
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model selection results. Intuitively, small � will favor smaller
numbers of communities and large � tends to identify large
numbers of communities. In fact, it is shown that complex
networks may be organized in the hierarchical structure
which allows us to view them in different resolutions �28�.
The accuracy � indeed provides the capacity to detect com-
munities in different resolutions.

However, it is expected that for networks with well-
defined community structure, the model selection criterion
should be robust to the choice of accuracy �. To verify this,
different accuracy � ranging from 1 /n to 1 /7n are tested on
the journal citation network �18�; this criterion identifies four
communities for � ranging from 1 /n to 1 /6n and three com-
munities when 1 /7n, strongly indicating that this network
actually has four communities. We further test how different
� will impact on the model selection result using the sym-
metric test when kout=6 ,7 ,8, respectively. For � ranging
from 1 /2n to 1 /7n, this criterion nearly always identifies the
correct number of communities when kout=6 ,7; however,
when kout=8, the accuracy drops drastically, this is due to the
fuzzy structure when there are too many edges linking to
other communities. The above results show that the model
selection criterion for SPAEM indeed is robust to the choice
of � for well-clustered networks.

IV. CONCLUSION

In this paper, we propose a probabilistic algorithm
SPAEM to resolve the community structure. We have

showed the power of SPAEM in detecting the community
structure as well as providing more useful information.
SPAEM is also extended to handle weighted network. To
determine the optimal number of communities, the minimum
description length principle is employed and tested on a va-
riety of networks. Though the test networks in this study are
mainly social networks, it should be claimed that the appli-
cability of SPAEM is not confined to social networks but
also include other types of network such as the biological
network. To allow researchers to better use our algorithm, we
make source code available �30,31�.

The mixture model in �22� is a good algorithm capable of
detecting patterns and handling directed networks, while
SPAEM focuses on detecting community structure. Experi-
mentally SPAEM does perform better in uncovering commu-
nity structure and identifying overlapping nodes. Though
these two algorithms seem to be similar to each other, they
are based on different model assumptions. Table V gives a
summary on features of the two algorithms.
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